Private firms revive big rockets

Startups, governments see future in satellites, space flights

It's been 44 years since the mighty Saturn V last thundered skyward from a launch pad at Kennedy Space Center in Florida. The towering rocket, generating enough power to lift 269,000 pounds into orbit, had been the workhorse of the Apollo moon missions.

Later this year, SpaceX plans to launch its most powerful rocket yet from the same pad. The long-awaited Falcon Heavy is key to the California company's plans to get more defense business, send tourists around the moon and launch its first unmanned mission to Mars.

But unlike the Saturn V, the Falcon Heavy will have plenty of competition.

Years in the works and the product of hundreds of millions of dollars of investments, a new generation of huge rockets will soon take off. Their manufacturers range from space startups to aerospace giants to the space agencies of the United States, Russia and China.

Because of advances in fuel, materials and electronics, the new rockets, while smaller than some of the Space Age beasts, may be more efficient and cost-effective. They will be able to hoist big spy satellites to a high orbit or ferry crews into space.

The rush of new rockets has prompted some to question whether NASA even needs to build its own big new space vehicle -- and whether there will be enough launch business to go around.

After years of a monopoly, the lucrative business of launching sensitive national security satellites is now competitive. But at the same time, the launch demand for large satellites is not expected to change.

And in the case of SpaceX, the workhorse Falcon 9 rocket -- which recently completed its 10th mission of the year -- has been upgraded to the point where it can handle heavier loads than originally expected.

Whereas SpaceX first thought that it would fly the same numbers of Falcon 9s as Falcon Heavys, it is turning out that Falcon 9s will have two to three times as many commercial missions. The company's May launch of the Inmarsat-5 F4 satellite on a Falcon 9 was originally planned for a Falcon Heavy.

"There is a part of the commercial market that requires Falcon Heavy," said Gwynne Shotwell, president of SpaceX. "It's there, and it's going to be consistent, but it's much smaller than we thought."

SpaceX says the price of a Falcon Heavy launch will be at least $90 million, versus $62 million for its Falcon 9.

That hasn't deterred rocket makers.

Last year, Amazon.com Inc. Chief Executive Officer Jeff Bezos announced a plan for a heavy-lift rocket called New Glenn to be built by his space firm, Blue Origin. The rocket, which will have two-stage and three-stage versions, was designed to launch commercial satellites and to take humans into space.

United Launch Alliance, a joint venture of Lockheed Martin Corp. and Boeing Co., has proposed a new rocket called the Vulcan, which would eventually replace its current intermediate- and heavy-lift vehicles.

Orbital ATK Inc. -- a commercial aerospace firm in Dulles, Va., that includes former divisions of Alliant Techsystems -- intends to expand its lineup with its first intermediate and heavy-lift rockets, known for now as the Next Generation Launcher.

Europe's Arianespace already can use its Ariane 5 heavy launcher to take two large satellites into space.

While rockets may look similar on liftoff, their makers can be selective in the contracts they target.

SpaceX has tried to compete for nearly all types of launches, but Orbital ATK seems to be focusing on the extreme ends of the market -- small and large payloads, said Carissa Christensen, chief executive of consulting firm Bryce Space and Technology.

"The launch market is complicated and so specialized that all of those players could find a niche," she said.

The U.S. government and its contractors have a long history of developing large rockets. That includes the Saturn V, the largest and most powerful rocket ever flown successfully, and United Launch Alliance's Delta IV Heavy, the most powerful rocket currently used by the Air Force to carry national security satellites to orbit.

The heavy-lift launchers of tomorrow would take advantage of key developments in composite materials, electronics and other technologies.

The first-stage booster of United Launch Alliance's proposed Vulcan rocket, for example, could be powered by BE-4 engines under development by Blue Origin that run on oxygen-rich staged combustion of liquefied natural gas and liquid oxygen. Those engines will also be used in Blue Origin's New Glenn heavy-lift rocket.

Not all the technology is completely cutting edge. The core stage of NASA's Space Launch System vehicle will use four RS-25 engines -- relics from the space shuttle program that are being retrofitted with new controllers that are smarter and lighter than past computers.

NASA already had 14 engines that had previously flown on the space shuttle and enough material to make two new engines, said Jim Paulsen, vice president of NASA programs at Aerojet Rocketdyne, which makes the engines. The company will perform tests on the engines to make sure that everything is running properly before being tested as a core stage.

Reusing parts after launch has changed the conversation about rocket economics, and it could be a factor in knocking down prices of the big rockets too, if there is enough demand. Both Blue Origin and SpaceX designed their first-stage boosters to be able to land after launch.

SpaceX CEO Elon Musk has said the Falcon Heavy will attempt to land its two side boosters -- which on its demonstration flight will be reused first stages from previous missions -- as well as its center core booster in a kind of "synchronized aerial ballet."

Shotwell said the company is working to see if it can bring the side boosters back to land, which would require overhauling its landing zone at Cape Canaveral. SpaceX may also need to build more drone ships if the company chooses to land the side boosters at sea, she said.

Business on 07/18/2017

Upcoming Events